
GO @ EXOSCALE
VINCENT BERNAT — EXOSCALE

EVALAIS.CH — MARTIGNY — 2018-03-27

1

THE GOOD PARTS ❤

2

EASY TO LEARN

Simplicity
Not many concepts to grok
Fluency in a few hours
Code usually readable (a bit verbose)
Good practices are fairly understood

Recommended reading:

A Tour of Go

3

https://tour.golang.org/welcome/1

CONCURRENCY

Goroutines: light-weight threads
Channels: share data between goroutines
Classic primitives are available if needed (mutex locks…)
Beware of goroutine leaking

Recommended reading:

Go channels are bad and you should feel bad
Death of goroutines under control

4

https://www.jtolio.com/2016/03/go-channels-are-bad-and-you-should-feel-bad/
https://blog.labix.org/2011/10/09/death-of-goroutines-under-control

SAFETY
Memory-safe
Garbage-collected
Static typing
Test culture

5

PERFORMANCE
👌

6

TOOLING
gofmt will format your code
go test has a race detector
go build supports cross-compilation (build a Linux executable for
your Raspberry Pi)

7

GREAT ECOSYSTEM
Need a Zookeeper client?
Need a PostgreSQL client?
Need a SSH server?
Need a BGP daemon?
Ability to interface with C easily

go-zookeeper
pq

ssh
gobgp

8

https://github.com/samuel/go-zookeeper
https://github.com/lib/pq
https://godoc.org/golang.org/x/crypto/ssh
https://github.com/osrg/gobgp/

THE “MEEEH” PARTS 🙄

9

STANDARD LIB
Some parts are not great:

logging
command-line parsing
testing

Some parts are great, notably HTTP

10

NOT REALLY A SYSTEM LANGUAGE
Standard library abstraction to support Plan 9
Breaking abstraction is sometimes difficult
Runtime can get in the way: until recently, namespaces were mostly
unusable

11

DEBUGGING
No good story so far for debugging
Most C tools like gdb and perf work with Go

12

THE BAD PARTS 🧟

13

GOPATH
Go enforces the way you organize your files
Your code is mixed with your dependencies
Some people like it, some hate it
Workaround with some Makefile
Will go away soon (part of vgo plan)

14

NO GENERICS
Difficult to write generic algorithm without them
Due to compatibility promise, they'll never be implemented
Go builtins are using generics (append, make)
Instead, people use interfaces (no more type safety at compile time)
Also see: sort.Slice

15

https://golang.org/pkg/sort/#Slice

NO VERSIONING CULTURE
Strong culture of “backward compatibility”
But some projects don't care about that much
Also, no way to know if the version you are using is stable (in the
middle of a refactor?) or very different from the version of last month
(major rewrite?)
But versioning is coming (part of vgo plan)

16

DEPENDENCY MANAGEMENT

Python: pip. Ruby: bundle. Java: mvn
During a long time, for Go, only go get
Vendoring was enabled in Go 1.6 (dependencies in vendor/)
Many different tools were proposed by the community (godep,
glide, gb)
In 2016, dep was started as the to-be official package manager. Work
like Ruby's bundle (so good)
In 2018, the whole experiment is replaced by the vgo plan

17

GO @ EXOSCALE

18

CLOJURE SHOP
LISP on top of the JVM
Great interoperability with Java
Immutability (great for concurrency)
Most of our in-house products are developed with Clojure

19

GO?
JVM is memory and CPU-hungry
C is error-prone (memory safety) and ecosystem is of inequal quality
Python may be too slow
Haskell is difficult for newcomers
Go is the current best language to develop system-oriented
components

20

EXAMPLE: JURA
Network orchestration
Cloud orchestrator provides network info for each VM to JURA
JURA locally configures the network on each hypervisor
Small codebase: 20k+ lines of code

21

COMPONENTS

Build:
 for compilation without a GOPATH

dep for vendoring and dependency management
Reporting:

Structured logging:
Error handling:
Error reporting:
Metrics: +

Makefile

inconshreveable/log15.v2
pkg/errors
raven-go

rcrowley/go-metrics go-collectd

22

https://vincent.bernat.im/en/blog/2017-makefile-build-golang
https://github.com/inconshreveable/log15
http://github.com/pkg/errors
https://github.com/getsentry/raven-go
https://godoc.org/github.com/rcrowley/go-metrics
https://github.com/collectd/go-collectd

COMPONENTS

CLI:
Retry:
Goroutine management:
Dependency injection: +

See also:

urfave/cli.v1
cenkalti/backoff

tomb.v2
facebookgo/inject facebookgo/startstop

go-kit

23

https://github.com/urfave/cli
https://github.com/cenkalti/backoff
http://gopkg.in/tomb.v2
https://github.com/facebookgo/inject
https://github.com/facebookgo/startstop
https://github.com/go-kit/kit

QUESTIONS?

24

